the geometry of diffusion creep: what the microstructures of the Troms nappe eclogites can tell us about fast exhumation

renee.heilbronner@unibas.ch holger.stunitz@ig.uit.no

Troms geology - deformation mechanisms - geometrical modelling - microstructure analysis engsøytjorden Sethaugnese omvik store Grindøya Stattnes Rallenesorider seljevol Ramfj raksietta Andersdal Kuvik Kobbevåg

James Mackenzie

l km

omphacite I

omphacite 2 (lower jadeite content)

shear sense top SE during retrograde overprint in metasediments

I mm

Tíme: 452 Ma - 449 Ma = 3 Ma (Corfu et al., 2003)

 $3 Ma = 3 \cdot 10^6 \cdot 365 \cdot 24 \cdot 60 \cdot 60 \approx 10^{14} s$

Pressure dífference: 3 GPa - 2 GPa = 1 GPa (Ravna & Roux, 2006)

> Vertical displacement ≈ 30 km Shear displacement ≈ 100 km Thickness of shear zone ≈ 1 km Shear strain $\gamma \approx 100$

Shear strain rate $\dot{\gamma} \approx 100 / 10^{14} \text{s} \approx 10^{-12} \text{s}^{-1}$ Localized shear: $\dot{\gamma} \approx 10^{-11} \text{s}^{-1}$ to 10^{-10}s^{-1}

fast exhumation high shear strain rates

which deformation mechanism?

deformation mechanism maps - flow laws

deformation mechanism maps - rheologies

deformation mechanism maps - regimes

deformation mechanism maps - grain size

microstructures

— 100 µm

bulging recrystallization

dislocation creep

microstructures

subgrain rotation recrystallization

dislocation creep

— 100 μm

microstructures

grain boundary migration recrystallization

dislocation creep

microstructures

– 500 µm

grain boundary sliding solution precipitation

diffusion creep

deformation mechanism = diffusion creep

how to recognize it ?

micromechanical models

- intracrystalline plasticity dislocation glide (facilitated by:)
- dislocation creep

granular flow grain boundary sliding pressure solution

diffusion creep

shape change = strain strain markers, homogeneous deformation

intracyrstalline plasticity dislocation glide with 5 slips systems (van Mises)

surfor paror (Panozzo, 1984, 1983)

change of size grain size distribution

recrystallization, grain growth, nucleation

stripstar Heilbronner & Bruhn (1998)

shape change ≠ strain lobate boundaries convex-concave angularity, etc.

grain boundary migration annealing, cataclasis

ishapes (Heilbronner & Keulen, 2006)

spatial distribution grain contact frequency

grain boundary sliding granular flow heterogeneous nucleation

transition frequency (Kretz, 1969)

new definition of old model ≠ Markov chain on 2-D

3-D model analyzed in 2-D

anticlustered

random

clustered

2 types of grains:

A = whiteB = black

no. of grains (A) = no. of grains (B) grain size (A) = grain size (B)

two types of grain boundary surface S

surface % (A) = surface % (B)

3 types of grain contact surface AA, BB, AB (= BA)

for any given grain A, B, ... the chance pA, pB, of sharing grain boundary surface with grains A, B, ... is proportional to the surface fraction¹⁾ of A, B, ... ¹⁾ surface (phase) / total grain boundary surface

the resulting distributions of contact surface AA, AB, ... BA, BB,...

follow the

binomial (polynomial) distribution

$$BB = pB \cdot pB = (I - pA)^{2}$$
$$AB = BA = pA \cdot pB + pB \cdot pA = 2 \cdot pA \cdot (I - pA)$$

$$AA = pA \cdot pA = pA^2$$

@ pA = pB = 0.5

Binomial distribution

@ $_{P}A = _{P}B = 0.5$

 $AA=_{P}A^{2} = 0.25$ $AB=2_{P}A(I-_{P}A) = 0.50$ $BB=(I-_{P}A)^{2} = 0.25$

stereology

volume % (phase) = area % (phase)
=
$$A(phase) / A_{tot}$$

= A_A (phase)

surface % (phase) = outline % (phase) = L(phase) / L_{tot} = $L_L(phase)$

surface % (contact) = line % (contact)
=
$$L(contact) / L_{tot}$$

= $L_{L}(contact)$

how to measure volume and surface in 2-D

3-D volume% = area%

3-D grain surface%= boundary outline %

3-D contact surface% = contact line%

how to find contact surfaces in 2-D

3-D numerical simulations

Lazy voronoi macro: create phase maps

Lazy voronoi contacts

3-D numerical simulations

10:90

33:66

50:50

Troms Nappe eclogites

T30: medium garnet content

T21: low garnet content

TI7: high garnet content

Troms Nappe eclogites

T30: medium garnet content

T21: low garnet content

TI7: high garnet content

spatial distribution = diffusion creep

process ?

micromechanical models

mass flux

diffusion creep

- through solid
- along boundary

granular flow grain boundary sliding pressure solution

eclogite facies: anisotropic growth of garnet

- fast exhumation, high shear strain rates
 deformation mechanism = diffusion creep
 geometrical model

 ≠ strain ≠ shape ≠ gs
 = spatial distribution

 model: 3-D, 2-D section
 - stereology 2-D > 3-D (≠ Kretz)
- 5. to get errors: simulations (3-D Voronoi by Ledoux)

... future work ?

errors?

errors?

- I. fast exhumation, high shear strain rates 2. deformation mechanism = diffusion creep 3. geometrical model \neq strain \neq shape \neq gs = spatial distribution 4. model: 3-D, 2-D section stereology 2-D > 3-D (≠ Kretz) 5. to get errors: simulations (3-D Voronoi by Ledoux)
 - ... 6. beer ...